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Abstract 

Insects achieve millisecond sensor–motor loops with tiny sensors, compact neural circuits, and powerful actuators, 

embodying the principles of Edge AI [1–9]. We present a comprehensive architectural blueprint translating insect 

neurobiology into a hardware–software stack: a latency-first control hierarchy that partitions tasks between a fast, 

dedicated Reflex Tier and a slower, robust Policy Tier, with explicit WCET envelopes and freedom-from-

interference boundaries [1–9]. This architecture is realized through a neuromorphic Reflex Island utilizing spintronic 

primitives, specifically MRAM synapses (for non-volatile, innate memory) and spin-torque nano-oscillator 

(STNO) reservoirs (for temporal processing), to enable instant-on, memory-centric reflexes [10–16]. Furthermore, 

we formalize the biological governance mechanisms, demonstrating that unlike conventional ICEs and 

miniturbines that exhibit narrow best-efficiency islands, insects utilize active thermoregulation and DGC 

(Discontinuous Gas Exchange) to maintain nearly constant energy efficiency across a broad operational load by 

actively managing their thermal set-point, which we map into thermal-debt and burst-budget controllers [17–33]. We 

instantiate this integrated bio-inspired model in an insect-like IFEVS thruster, a solar cargo e-bike with a 

neuromorphic safety shell, and other safety-critical edge systems, providing concrete efficiency comparisons, 

latency and energy budgets, and safety-case hooks that support certification and adoption across autonomous 

domains [6,11,14,28]. 

Keywords: Edge AI; Insect inspired control; Optic flow; Halteres; Discontinuous gas exchange; 

Thermoregulation; Neuromorphic computing; Spintronics; MRAM; STNO; WCET. 

Glossary table 

• Reflex Tier — fastest safety-critical control with hard deadlines (Control). 

• Reflex Island — isolated near-sensor partition executing the Reflex Tier (Platform). 

• Reflex substrate (spintronic/CMOS) — technology implementing the Reflex Tier (Platform). 

• Policy Tier — slower mapping/planning; publishes goals to Reflex (Control) 

• FFI (freedom-from-interference) — faults/jitter in Policy can’t affect Reflex (Safety). 

• ASIL allocation — ISO 26262 safety level assignment per function (Safety). 

• DGC (Discontinuous Gas Exchange) — Closed–Flutter–Open; analogy for idle I/O gating (Biology↔Firmware). 

• Thermal debt — required cool-down after a burst (Thermal). 

• Set-point temperature — maintained flight-muscle band during work (Thermal/Biology). 

• Cooling conductance 𝐺— linearized convection + radiation loss (Physics). 

• Thermal time constant 𝜏— response time; scales roughly with size (Physics). 

• Prime mover — fuel engine/turbine kept at efficiency island (Propulsion). 

• Cold-to-idle latency — light-off to usable idle time (Propulsion). 

• BSFC map — brake-specific fuel consumption vs rpm/load (Efficiency). 

• Injection event (micro-injection) — one pulse in a split injection (Engines). 

• Thoracic shivering — pre-flight warm-up of flight muscles (Biology/Thermal). 

• Optic flow — wide-field visual motion cue (Sensing). 

• Halteres — gyroscopic sensory organs in Diptera (Sensing). 

• Dorsal Rim Area (DRA) — polarization-sensitive zone for celestial compass (Sensing). 

• Central Complex (ring attractor) — neural compass with an activity bump (Control/Biology). 

• CPG (central pattern generator) — rhythmic actuation circuit (Control/Biology). 

• STNO reservoir — spin-torque oscillator network for temporal processing (Hardware). 

• MRAM synapse — non-volatile weight (MTJ) for instant-on reflex (Hardware). 

• DVFS — dynamic voltage/frequency scaling under thermal control (Platform).  



• WCET envelope — worst-case execution-time budget from sensor exposure to actuator update, including safety margin, 

defined per Reflex loop (Timing/Safety). 

 

1. Introduction: Insects as canonical edge-AI systems 

Insects execute navigation, stabilization, landing, foraging, and escape entirely on-device, using parallel sensors 

(compound eyes, ocelli, halteres, antennae) connected by short neural pathways to actuators with ms-range latency 
[1-4]. They fuse wide-field optic flow with inertial/gyroscopic signals for phase-locked wing control [1-3], mapping 

well to latency-first embedded loops in robotics and vehicles. Their neural organization cleanly separates fast 

stabilization from slower planning/learning, matching the Reflex/Policy split we adopt [5-9]. 

1.1 The fly (stabilization specialist) 

Flies combine halteres (mechanical gyroscopes) with wide-field vision to stabilize attitude within tens of 

milliseconds [1-3]. A “giant-fiber” pathway triggers evasive maneuvers with minimal synapses, illustrating an 

architectural bias for short, deterministic, high-priority reflexes [4,5]. 

The fly is the archetype of the ultra-low-latency control system, focused relentlessly on stabilization and rapid 

evasive maneuvers. Its architecture is designed for speed, relying on high-bandwidth sensors (like the halteres and 

compound eyes) connected by short, dedicated neural pathways to achieve response times measured in 

milliseconds, making it the perfect biological analogy for the Edge-AI Reflex Tier. 

Component Description and Function Edge-AI Analogy 

Sensors (Fast & 

Complementary) 

"Compound eyes (wide FOV, very high temporal 

resolution); Ocelli (simple light sensors for attitude); 

Halteres (gyroscopes sensing body rotation via 

Coriolis forces); Antennae/hairs (airflow and 

vibration)." 

IMU/Gyroscopes + Global-

shutter/Event Cameras + 

Airflow Sensors. 

On-board 

Computation 

"Optic lobe motion detectors (parallel ""flow"" 

filters); Reflex pathways (e.g., ""giant fiber"" escape 

route) prioritizing latency; Central complex 

(orientation); Mushroom bodies (learning)." 

Fixed-function accelerators (for 

optic flow); Low-latency 

neuromorphic circuits (Reflex 

Tier). 

Control Loops 

Inner Loop (Stabilization): halteres + ocelli + wide-

field motion → wing adjustments in a few–tens of ms. 

Outer Loop (Goal): visual flow + odor/airflow → 

course/target selection over longer windows. 

Two-tier control: Reflex Tier 

(µs-ms) for stabilization; Policy 

Tier (ms-s) for planning. 

Edge-AI Lesson: Push stabilization to hard-real-time reflex loops near sensors; keep planning separate and slower. 

Use IMU/"gyros" + fast flow sensors, fuse them, and actuate at kHz rates. 

 

 
Figure 1.1: A schematic diagram illustrating the tight sensor-compute-actuation loop in Drosophila [1,2,3,4,5].  
 



Core Concept: A minimalist, hard-real-time control loop where the gyroscope (Halteres) and optic flow (Eyes) 

are fused to control the wings. 

• Sensing: The halteres detect angular velocity via Coriolis forces, while the compound eyes detect wide-

field optic flow. 

• Compute (Fusion): These two streams are fused in thoracic reflex loops, creating a complementary filter 

where halteres handle fast perturbations and vision handles slow drift. 

• Actuation: The resulting error signal directly modulates the phase and amplitude of tiny steering muscles, 

making micro-adjustments at each wingbeat to stabilize attitude. 

1.2 The bee (navigation and task specialist) 

Bees add robust heuristics for speed control and landing e.g., holding optic-flow expansion roughly constant as 

well as a celestial compass (polarization sensitivity) for long-range navigation [6-9]. In the central complex, ring-

attractor circuits maintain a persistent heading “bump,” providing a compact Policy signal to bias reflexes [8,9]. 

While the fly excels at ultra-low-latency reflexes, the bee represents an Edge-AI system optimized for robust, 

long-range navigation and complex task execution, relying heavily on stable internal cues and learned heuristics. 

It is a specialist in path integration and associative learning, which are critical features for modern Edge-AI used 

in persistent monitoring or delivery tasks. 

Component Description and Function Edge-AI Analogy 

Sensors 

Compound eyes (incl. UV) + polarization sensitivity 

(sun compass); Ocelli (attitude); Antennae (olfaction 

+ mechanosensation); Body hairs (micro-climate). 

Polarization/UV Sensors; 

Odorimeters; Temperature/Contact 

Sensors. 

On-board 

Computation 

Optic flow odometry (distance estimation); Central 

complex (heading/compass and path integration); 

Mushroom bodies (associative learning); Task 

switching with minimal memory. 

Visual Odometry (2D V-SLAM); 

Rule-based Policies (Heuristics); 

Local Learning (small neural 

networks). 

Control Loops 

Landing/Altitude: Maintain constant optic-flow 

expansion → smooth landings without absolute 

altitude. Navigation: Polarization compass + optic-

flow odometer + odor cues → waypoint-style 

guidance. 

"Non-linear control based on 

heuristics (e.g., adaptive Proportional-

Integral-Derivative); Low-cost sensor 

fusion." 

 

 



Figure 1.2 A: The bee as navigation and task specialist, Reflex vs Policy. Schematic overview of how multi-

modal sensing (wide-field vision, polarized-sky compass, odor and wind cues) feeds into fast navigation Reflex 

pathways and slower Policy/Task pathways in the bee brain. The upper “Reflex Tier” slice represents short-latency 

loops for corridor centering, obstacle avoidance and landing; the lower “Policy Tier” slice summarizes slower path 

integration, route memory and value-based foraging decisions. Actions (flight path, task switching, waggle 

communication) emerge from the combined influence of these tiers, providing the biological template for our 

Edge-AI Reflex Islands and Policy layer. 

Edge-AI Lesson: Use cheap cues (flow, polarization, brightness) to compute robust control signals without heavy 

models. Keep local learning (simple associations) at the Edge. 

 
Figure 1.2 B: Bee landing control via optic flow. During landing, the bee observes an expanding ground pattern; 

the visual angle 𝛼(𝑡) between the eye and the touchdown point increases as the bee approaches. A simple heuristic 

keeps the angular expansion rate 𝑑𝛼/𝑑𝑡approximately constant, which yields an exponential deceleration and soft 

landing[6]. An optic-flow sensor provides 𝛼 and 𝑑𝛼/𝑑𝑡 to a non-linear landing controller; increasing upward thrust 

brakes the descent to hold 𝑑𝛼/𝑑𝑡  constant, whereas reducing thrust allows gravity to dominate and increases 

descent speed.  

• Sensing: As the bee approaches a surface, the visual image of the ground expands on its retina. The rate of 

this expansion (dalpha/dt) is computed. 

• Policy: The bee's control policy is a simple heuristic: "Modulate thrust to keep the optic expansion rate 

constant." 

• Actuation: If expansion is too fast, the bee increases thrust; if too slow, it decreases thrust. 

 

This simple, non-linear control loop automatically results in a smooth, decelerating touchdown without needing 

to know its absolute altitude h. 

 

 
Figure 1.3: A schematic diagram illustrating the bee's robust, low-bandwidth navigation system [7].  



Sensing: UV photoreceptors in the dorsal rim of the compound eye detect the pattern of polarized light in the 

sky, which is fixed relative to the sun's position. 

• Compute (Integration): Specialized neural circuits integrate the e-vector orientation to maintain a stable 

global heading, even when the sun is obscured. 

• Policy: This stable heading signal feeds into the Policy Tier (Central Complex) to bias the path integration 

and course selection, providing a low-cost, long-range compass. 

 
Figure 1.4: A schematic diagram illustrating the insect's internal head-direction system Central Complex Ring-

Attractor (Flies/Bees) [8,9].  

• Sensing/Input: Visual and proprioceptive inputs (e.g., optic flow, haltere signals) provide cues about angular 

velocity and landmarks. 

• Compute (Ring Attractor): The Central Complex (specifically the Protocerebral Bridge) implements a 

recurrent neural network known as a ring attractor. 

• This circuit maintains a persistent "bump" of activity that represents the animal's current heading. 

• Policy: The position of the bump acts as a stable, internal state variable, a heading set-point that biases 

downstream motor reflexes, separating the high-level goal (direction) from low-level execution (torque). 

2. Latency-first architecture (biology → engineering) 

Insect biology provides a model for a two-tier control architecture, essential for safety-critical Edge-AI systems: 

it prioritizes the speed and reliability of local reflexes over the complexity of global planning. This latency-first 

approach ensures that critical stabilization and emergency responses occur via the shortest, most deterministic 

pathway possible. 

2.1. Two-Tier Control 

Biological 

Tier 
Engineering Tier Typical Latency Function 

Reflex 
Reflex Tier 

(Neuromorphic Island) 

Microseconds–

Milliseconds (µs–ms) 

"Stabilization, immediate reactions, low-level 

control (e.g., halteres → steering muscles)." 

Policy 
Policy Tier (RT 

Core/NPU) 

Tens–Hundreds of 

Milliseconds (ms–s) 

"Navigation, path planning, associative 

learning, goal selection (e.g., central complex 

→ reflexes)." 

We implement two tiers: a Reflex Tier (near sensors/actuators; µs–ms) and a Policy Tier (ms–s), communicating 

via timestamped, lock-free queues. Reflex handles stabilization and safety; Policy handles mapping, heuristics, 

and goals. This mirrors insect hierarchies and makes timing budgets analyzable for safety certification [4,5,10,11]. 

Design principles are: co-locate sensors/compute/drivers; wire interrupt → DMA → neuromorphic Reflex → RT 



core → PWM/FOC; hold end-to-end stabilization <5 ms with critical safeties <1 ms; and export only goal states 

upstream. 

Table 2.1 gives an illustrative WCET envelope for a reference Reflex loop inspired by “haltere + optic flow → 

steering muscles”, instantiated on a representative automotive stack (AURIX-class MCU + MRAM device + 

Loihi-class SNN). Times are worst-case at the hot electrical corner (high temperature, low voltage), including 

guard bands. 

Table 2.1 – Example Reflex-loop WCET breakdown (optic flow + IMU → steering PWM) 

Stage Function (example stack) WCET (µs) Cumulative (µs) 

1 DVS/IMU exposure → interrupt assertion 50 50 

2 DMA + time-stamp + spike encoding into Reflex Island 150 200 

3 FF-SNN layer 1 (elementary motion detectors) 800 1,000 

4 STNO reservoir / RSNN update + readout 1,200 2,200 

5 Reflex decision logic + watchdog comparators 400 2,600 

6 RT core arbitration, FOC current reference update 400 3,000 

7 PWM/timer update + gate-driver propagation 400 3,400 

Example stack: Infineon AURIX TC39x (300 MHz, 40 nm), Everspin STT-MRAM (35 ns access), Loihi 2-class 

SNN core (14 nm, ~2 µJ/inference). Times are worst-case at 125°C, 85% Vmin.  

The resulting end-to-end Reflex WCET is 3.4 ms against a 5 ms design budget, leaving ≈32% margin. Critical 

hardwired safety paths (e.g. limit-switch or E-stop → power stage) bypass the neuromorphic layers entirely and 

are kept below 1 ms. The table is not meant as a new benchmark, but as a concrete example of how the latency-

first architecture supports WCET reasoning at the component and loop level. 

3. Neuromorphic and spintronic hardware 

The physical implementation of insect Edge-AI principles finds a natural analogy in neuromorphic and spintronic 

technologies. 

3.1. Why Neuromorphic Matches the Insect Edge 

Spiking Neural Networks (SNNs) are the central concept of neuromorphic computing and directly mirror insect 

neural codes: computation occurs only on significant changes in input (events), not on continuous data streams. 

This event-driven nature drastically reduces data movement and power consumption while maintaining the µs–ms 

responsiveness required for reflexes. SNNs naturally handle temporal coding and oscillations, which maps directly 

to biological principles like Central Pattern Generators (CPGs) and the rhythmic phase control necessary for insect 

flight timing. Furthermore, the inherent architecture of neuromorphic chips, with memory co-located or 

interwoven with processing elements supports local, on-device adaptation (e.g., STDP-like plasticity), similar to 

the associative learning observed in the insect mushroom bodies, bypassing the need to send large datasets to the 

cloud for learning updates. Spiking computation is event-driven and temporal, reducing data movement and power 

while meeting µs–ms latency; it naturally supports oscillations/CPGs and online adaptation [12-14]. 

To realize the Reflex Island, the SNN architecture should be a hybrid model: an initial Feed-Forward SNN (FF-

SNN) layer executes rapid event filtering and early feature extraction (e.g., elementary motion detectors for optic 

flow), which then feeds into the core Recurrent SNN (RSNN) / Spintronic Reservoir layer responsible for state-



space integration (e.g., haltere-visual fusion). Benchmarks for this layer must target ultra-low latency (end-to-end 

tau < 5ms with extreme energy efficiency (aiming for power consumption of < 1pJ or total power < 1mW for the 

dedicated reflex loop), aligning the system with the insect’s goal of continuous, deterministic stabilization. 

Spiking neuromorphic hardware has already been validated at scale on several platforms: Intel’s Loihi chips for 

on-chip learning, the SpiNNaker many-core machine, IBM’s TrueNorth neurosynaptic processor, and BrainChip’s 

Akida edge SoC, all of which demonstrate low-power, event-driven inference in real applications [13,62–64]. 

3.2. Spintronic Primitives as "Physical Synapses and Neurons" 

Spintronic devices offer the ideal physical building blocks for constructing the ultra-low-power, instant-on "Reflex 

Island". Their fundamental advantage is that they are "memory-centric," enabling computation to happen at the 

site of memory. This approach directly attacks the primary bottleneck in conventional computing, the energy and 

latency cost of moving data between a separate processor and memory, which is precisely the problem insects 

solve with their short, efficient neural pathways. 

This spintronic-neuromorphic architecture is built from two key components: 

• MRAM synapses (MTJs). Non-volatile, instant-on “innate” reflex weights, perfect for a cold-start Reflex 

Island [10,15]. The "synapses," which store the network's knowledge, are implemented using Magnetic RAM 

(MRAM). These are physical analogs for synapses, built from Magnetic Tunnel Junctions (MTJs). Their 

most critical property is non-volatility: they store the synaptic weights (the "innate reflexes") permanently, 

without requiring any power. This provides two transformative advantages for an edge device: 

Instant-On Capability: The MRAM-based "Reflex Island" is instantly ready to compute when an event 

arrives, as the reflexes are physically embedded, emulating the "innate memory" of a biological reflex.  

Energy Efficiency: By eliminating standby power for memory, this architecture drastically reduces overall 

power consumption, mirroring an insect's low metabolic rate at rest. 

• STNO neurons/reservoirs. GHz nano-oscillators that process temporal streams (IMU, event cameras) as 

rich reservoirs, mapping to optic-flow and reflex transforms [10,15,16]. 

Together they yield a memory-centric, event-driven, instant-on reflex substrate aligned with insect physiology [10-

16]. The "neurons," which process information, are implemented using Spin-Torque Nano-Oscillators (STNOs). 

These are compact, high-frequency (GHz) oscillators that naturally function as spiking neurons. Their unique 

strength is processing temporal information. STNOs are ideal for this, especially when configured as Reservoir 

Computers. An "STNO reservoir" is a complex, dynamic system of oscillators that can take high-speed temporal 

data streams (like from an event camera or IMU) and perform powerful sensorimotor transformations, making 

them a perfect fit for complex tasks like optic flow analysis and stabilization control. 

The resulting MRAM–STNO stack is not speculative: it is explicitly tracked in industrial roadmaps such as the 

IRDS ‘Emerging Research Devices/Beyond CMOS’ chapter, the 2022 Roadmap on Neuromorphic Computing 

and Engineering, and the SRC/SIA Decadal Plan for Semiconductors, all of which identify spintronic memories 

and oscillators as leading candidates for ultra-low-power, neuromorphic compute fabrics [56,65–67]. 

While the MRAM synapse is mature (TRL 8-9) and already commercialized for non-volatile memory, the STNO-

based reservoir neuron remains at mid-development (TRL 4-5) due to integration challenges; consequently, the 

full Reflex Island chip incorporating both primitives for deterministic, event-driven control is realistically 

projected to achieve integrated laboratory prototypes (TRL 5-6) within 2-3 years, leading to initial deployment in 

specialized, latency-critical domains like micro-robotics or medical sensing (TRL 7+) within the next 5 years. 



Commercial MRAM examples are: Everspin EMD3D256M16 (256 Mb, 35 ns, TRL 9); TSMC 22ULL eMRAM 

(16 Mb embedded, TRL 8); Avalanche MRAM-based accelerators (TRL 7–8). Per IRDS 2022, embedded STT-

MRAM reached volume production in 2020–2022 at leading fabs. 

 
Figure 3: A schematic illustrating how spintronic devices implement insect Edge AI principles. Spintronics for 

Bio-Inspired Edge AI. Spintronic Architecture for the Reflex Island [10,15,16].   

 

• Sensing: Event streams from sensors (e.g., event cameras, IMU) are converted into spikes (electrical pulses). 

• Compute (MRAM Synapses): Magnetic Tunnel Junctions (MTJs) in MRAM act as non-volatile synapses, 

storing neural network weights directly where they are used. This enables instant-on capability and near-zero 

standby power, emulating innate memory and reflexes. 

• Compute (STNO Neurons): Spin-Torque Nano-Oscillators (STNOs) act as compact, high-frequency (GHz) 

spiking neurons. They can form reservoirs for processing temporal tasks and sensorimotor transformation, 

such as optic flow analysis. 

• Actuation (RT Core): The output (set-points) of the spintronic SNN feeds a deterministic Real-Time Core 

(RT Core) that performs final control (PID/LQR) and drives the actuators. 

4. Thermoregulation, frequency control, and “natural engine” analogies 

Small flyers sit on an unforgiving surface-to-volume battlefield: heat is generated by volume but lost through 

surface. We formalize the physics, then build an intuitive efficiency comparison among insects, ICEs, and 

miniturbines. 

4.1 Discontinuous gas exchange (DGC) and idle I/O gating 

At rest many insects use DGC spiracles cycle Closed → Flutter → Open—to satisfy O₂ needs while minimizing 

water loss and oxidative stress [17-24]. We adopt DGC as I/O gating: Closed (deep idle), Flutter (duty-cycled health 

checks), Open (full bandwidth on demand). 

4.2 Thermal governance as a state machine 

Insects actively control temperature during any phase of operation. This need for active control highlights a key 
advantage over conventional micro-scale propulsion systems: Unlike internal combustion engines or miniature 

turbines, which are power-limited by narrow best-efficiency islands due to strict thermal and mechanical 

tolerances, the insect decouples output power (frequency) from efficiency by actively maintaining a near-constant 

thermal set-point across a broad operational load. This biological mechanism gives the system superior operational 

flexibility and near-constant efficiency across the entire performance range, a crucial goal for Edge AI power 

management.  

This insect-inspired thermal governance system formalizes burst budgeting as a predictive control loop that allows 

transient maximum power Pmax to temporarily exceed steady-state thermal dissipation based on the explicit 

assumption of a lumped thermal capacitance model tau for the critical component cluster (the Reflex Island); the 

permissible burst duration tburst is then dynamically calculated and corrected by a feedback term proportional to 



the current thermal debt 𝛥Tdebt = Tcore - Tsetpoint and and environmental variable correction factor, predominantly 

the ambient temperature Tamb, to ensure the critical component temperature Tcrit is never exceeded. 

In flight, insects actively thermoregulate: shivering warms thoracic muscles to a tight performance band; 

ventilatory/evaporative cooling and head–thorax heat partitioning hold neural function while exporting heat [21-24]. 

We mirror this with a firmware state machine: REST → WARM-UP → WORK → BURST → COOL-DOWN 

→ FAULT-SAFE, always preserving Reflex deadlines while shedding Policy first. 

4.3 Why thermoregulation tightens at small scale (black-body + convection) 

Small flyers sit on an unforgiving surface-to-volume battlefield: heat is generated by volume but lost through 

surface. A lumped heat balance for a body at temperature 𝑇 is: 

𝐶 
𝑑𝑇

𝑑𝑡
= 𝑃gen − ℎ𝐴 (𝑇 − 𝑇∞) − 𝜀𝜎𝐴 (𝑇4 − 𝑇∞

4 ) 

 

with thermal capacitance 𝐶 = 𝜌𝑐𝑉, convection coefficient ℎ, emissivity 𝜀, and the Stefan–Boltzmann constant 𝜎. 

Linearizing radiation about ambient 𝑇∞yields a combined cooling conductance: 

 

𝐺   ≈   ℎ𝐴   +   4 𝜀𝜎𝐴 𝑇∞
3  

 

so the dynamics reduce to a first-order form 𝐶 𝑇̇ = 𝑃gen − 𝐺 (𝑇 − 𝑇∞) with thermal time constant 𝜏 = 𝐶/𝐺. With 

characteristic length 𝐿, 𝐴 ∝ 𝐿2 and 𝑉 ∝ 𝐿3 ⇒ 𝜏 ∝ 𝐿: smaller bodies (large 𝐴/𝑉) heat and cool much faster, 

demanding active thermoregulation to hold performance set-points [25,26]. 

 

Figure 4.1: Heat balance with 𝐴/𝑉scaling (conceptual). Internal power 𝑃genenters the Body (volume 𝑉) and is 

balanced by Convection ℎ𝐴(𝑇 − 𝑇∞) and Radiation 𝜀𝜎𝐴(𝑇4 − 𝑇∞
4 ). Linearizing radiation around ambient yields 

the cooling conductance 𝐺 ≈ ℎ𝐴 + 4 𝜀𝜎𝐴 𝑇∞
3  and the thermal time constant 𝜏 = 𝜌𝑐𝑉/𝐺. With 𝐴  ∝  𝐿2 and 𝑉  ∝

 𝐿3, 𝜏  ∝  𝐿: smaller 𝐿→ higher 𝐴/𝑉→ shorter 𝜏. Mini-panels summarize small- vs large-scale behavior. 

4.4 A four-stroke “natural engine” for insect thermoregulation 

Insects don't have distinct strokes; they modulate continuously, we reframe insect thermal cycles using four-stroke 

terminology familiar to engineers, not to imply mechanical equivalence but to aid conceptual mapping to firmware 

state machines: 

1. REST/IDLE (Intake) - DGC closes spiracles; minimal leaks [17-20]. 



2. WARM-UP (Compression) - shivering thermogenesis raises thoracic 𝑇; head is kept cooler to protect 

timing [21-23].  

3. WORK/BURST (Power) - wing actuation couples to ventilation; evaporative cooling grows with work to 

export heat [22-24]. 

4.  COOL-DOWN (Exhaust) -ventilation/evaporation repay thermal debt; revert to REST when set-point 

recaptured [21-24]. 

 
Figure 4.2: A schematic diagram illustrating the state-dependent thermal management system. Thoracic 
Thermoregulation Control [22,23]. 

• Sensing: Thoracic temperature (for power output) and ambient temperature are monitored. 

• Compute (Control): A central control mechanism (analogous to a firmware state machine) actively regulates 

heat production (e.g., shivering) and heat dissipation (e.g., head cooling/evaporative cooling) to maintain a 

performance-optimal thoracic temperature set-point. 

• Engineering Analogy: This is mirrored by an Edge AI system's thermal governance, which uses a state 

machine to dynamically adjust power/clock frequency (DVFS) and sensor duty cycles based on thermal 

sensors and predicted load, allowing for short, high-performance bursts while preventing thermal runaway. 

 

4.5 Propulsion analogy: injection/wingbeat frequency and efficiency 

4.5.1 Injection event frequency in ICEs 

In a four-stroke engine each cylinder has one combustion event every two crank revolutions. If each event uses 

𝑁injmicro-injections, the per-cylinder injector command rate is 

𝑓inj,cyl   =   
RPM

120
 𝑁inj[Hz] 

 

and for an even-fire engine with 𝑛𝑐cylinders the aggregate scheduling rate is 

𝑓inj,agg   =   
RPM

60
⋅

𝑛𝑐

2
⋅ 𝑁inj[Hz] 

 

Examples. At 8000 rpm with 𝑁inj = 6 and 𝑛𝑐 = 4: 𝑓inj,cyl = 8000/120 × 6 = 400 Hzper cylinder; 𝑓inj,agg ≈

(8000/60) × (4/2) × 6 ≈ 1600 Hz. At 2000 rpm with the same 𝑁inj: 𝑓inj,cyl ≈ 100 Hz, 𝑓inj,agg ≈ 400 Hz. Thus 

modern multi-pulse strategies operate squarely in the 102–103 Hz decade at typical speeds [27-31]. 

Multiple injections (pilot/main/post; up to 5–8 pulses per event) [27-31] shape heat-release for emissions/noise 

without changing the thermodynamic island where efficiency peaks. 



4.5.2 Wingbeat frequency in insects 

Wingbeat falls in the same 10²–10³ Hz decade but is produced by asynchronous flight muscle and thorax 

resonance: neural spikes gate contractions while frequency stems from elastic mechanics, enabling high-Q 

operation with modest compute. Honeybees hover at ≈230 Hz [32-35], some small dipterans exceed 1 kHz [32,33]. 

4.5.3 Efficiency maps: narrow islands vs near-flat bands 

ICEs (and Brayton turbines) display narrow best-efficiency islands (low BSFC or high specific efficiency) at 

particular power–rpm combinations; moving away, especially to low load, induces pumping and heat losses. 

Adjusting injection/ignition timing or increasing pulse frequency does not flatten the thermodynamic map [27,36,37]. 

Insects, by contrast, regulate power primarily by wingbeat frequency and stroke while maintaining thoracic 

temperature near an optimal set-point, so mechanical conversion efficiency varies only modestly across the 

functional range: frequency-based power, nearly constant efficiency [21–24,32–35]. Classical work-loop and 

respirometry studies [52–54] report mechanical efficiencies for flight muscle that fall in the ~10–15% range for 

several species and preparations, even as mechanical power output and wingbeat frequency vary by about a factor 

of three to four.  Ellington [53] reports a calculated upper limit of 29% for hovering flight muscle efficiency if 

elastic storage is ignored, challenging the low-efficiency view. Syme [35], acknowledges asynchronous muscle 

efficiency in the 15-20% range, suggesting the muscle type itself is highly evolved for mechanical output. We can 

then confidently that insect flight muscle efficiency is not only high but exceeds 15% under maximal power output 

conditions, justifying the engineering focus on maintaining a thermal set-point to keep it operating near this 

maximal efficiency island regardless of external power demand. 

Rather than attempt a precise meta-analysis of heterogeneous experiments, we summarize these data in Fig. 4.3 as 

a shaded efficiency band between 10% and 15% across a broad span of normalized mechanical power. This stands 

in contrast to the narrow high-efficiency peak sketched for ICEs and miniturbines, whose efficiency falls off 

steeply away from the island. 

Insect flight muscle (specifically the asynchronous flight muscle used by flies, bees, and wasps) is a highly 

specialized engine whose mechanical efficiency is temperature-dependent. 

• Optimal Temperature: The enzymes and contractile filaments within the muscle are designed to operate at 

a specific, elevated temperature (often 35oC to 40oC). At this thermal set-point, the muscle fibers achieve their 

maximum power output and mechanical efficiency (10%-15%). 

• Active Regulation: The insect actively regulates its thoracic temperature to stay near this set-point. This 

means: 

o If cold, the insect shivers (pre-flight warm-up) to generate waste heat and reach the set-point. 

o During flight, if the power demand is low (generating less waste heat), the insect may actively reduce 

heat dissipation. 

• Decoupling Power from Efficiency: By ensuring the muscle is always at its biomechanical "sweet spot," the 

insect can then adjust its mechanical power output simply by changing its wingbeat frequency (within limits) 

or adjusting its wing amplitude, without sacrificing its intrinsic mechanical efficiency. This results in the 

"flat" efficiency curve. 

Insect flight muscle does not have perfectly flat efficiency, but its load dependence over the biologically relevant 

operating range is modest compared to conventional heat engines. This justifies the “near-flat band” representation 

adopted in Fig. 4.3 and underpins the propulsion analogy in §5, where we seek engineered systems whose prime 

movers behave more like insect flight muscle than like classical BSFC maps. 



 
Fig. 4.3 – Mechanical efficiency vs. normalized power for engines, miniturbines and insect flight muscle. 

Mechanical efficiency as a function of normalized mechanical power (fraction of rated power). The solid curve 

shows a schematic diesel/gasoline ICE map with a broad peak around 45% efficiency at ~0.75 of rated power and 

modest degradation at full load as in standard BSFC maps [36,37]. The dashed curve shows a schematic micro gas 

turbine/miniturbine map representative of 200–400 N units, with peak efficiency ≲25% near 0.8 of rated power 

and pronounced losses at partial load. The shaded band indicates the ~10–15% mechanical efficiency range 

reported for insect flight muscle over a wide operating range, and the coloured symbols illustrate representative 

efficiencies from classical studies by Weis-Fogh [52], Ellington [53], Harrison & Roberts [54], Josephson[70] and 

Marden[71]. The curves are intentionally schematic but capture the qualitative contrast between narrow, load-

sensitive engine maps and the comparatively weak load dependence of insect flight muscle. 

Fig. 4.4: Insect thermoregulation with in-flight modulation (A/B). (A) Full timeline from REST (cool) through 

WARM-UP (shivering) to FLIGHT, where a visible periodic modulation illustrates beat-synchronous thermal 

cycling (amplitude enlarged for clarity), followed by COOL-DOWN to repay thermal debt. (B) Zoom into two 

cycles, labeled Intake → Compression → Power → Exhaust to highlight the four-stroke-like modulation during 

steady flight. Real wingbeat oscillations occur at 10²–10³ Hz and are typically smaller; the schematic emphasizes 

the control concept supported by classic thermoregulation studies [21-24,32]. 

4.6 Miniturbines: scaling limits, high rpm, and cold-start latency 

Miniaturization hurts Brayton machines: higher relative tip-clearance and lower Reynolds degrade stage 

efficiency; non-adiabatic effects loom larger [38-41]. Even commercial ~30 kW microturbines (e.g., Capstone C30) 

reach only ~26% [42,43] electrical efficiency (LHV) in recuperated simple cycle, far below big turbomachinery [42,43]. 

To reclaim pressure ratio at small diameters, rotors spin very fast (often >120 krpm) [44,45], stressing bearings/rotors 

and complicating thermal transients [44,45]. Start sequences (purge → light-off → accel) impose ~15-20 s [46] cold-

to-idle delays even for RC-scale microjets, unlike the insect’s instant re-engagement once warm. 



Consequence: miniturbines show narrow efficiency peaks, seconds-scale startup, and rpm ceilings, demanding 

strict burst budgeting and explicit warm-up/cool-down policies. 

4.7 Computational governance: Engine ECUs vs Insect Nervous Systems 

Modern powertrains use ASIL-D MCUs delivering multi-billion-instructions/s (DMIPS) paired with hardware 

timing engines for sub-ms injector/ignition scheduling, e.g., Infineon AURIX TC39x (~2700 DMIPS; six 300 

MHz cores) and NXP MPC5777C (dual 300 MHz + eTPU2 channels for precise pulse timing) [11,47-49]. 

Insects achieve comparable actuation rates with distributed, event-driven control: a modest descending channel 

gates thoracic CPGs, while asynchronous muscle and elastic thoraces supply high-frequency mechanics [32-35,50]. 

The whole-brain Drosophila connectome (~139k neurons, ~50+ M synapses) underscores a rich yet compact 

controller that remains compatible with low-power edge implementations [51]. 

4.8 Firmware hooks: Operationalizing Natural Strategies for Timing, Thermal, and Safety 

Engineering 

Physics-aware burst budgets. From §4.3, model the critical component temperature with 

𝐶 𝑇̇   =   𝑃burst − 𝐺 (𝑇 − 𝑇∞), 𝐶 = 𝜌𝑐𝑉      τ = C/G   

 

With initial 𝑇(0) = 𝑇0, the solution is 

Δ𝑇(𝑡) ≡ 𝑇(𝑡) − 𝑇0   =   
𝑃excess

𝐺
(1 − 𝑒−𝑡/𝜏)        𝑃excess = 𝑃burst − 𝐺 (𝑇0 − 𝑇∞). 

 

The allowable burst duration is the first 𝑡𝑏such that Δ𝑇(𝑡𝑏) = Δ𝑇max = 𝑇max − 𝑇0, i.e. 

𝑡𝑏    =    −  𝜏 ln (1 −
𝐺 Δ𝑇max

𝑃excess

). 

 

After a burst, define thermal debt 𝐷 = 𝑇(𝑡end) − 𝑇set  and remain in COOL-DOWN until 𝐷 → 0; Reflex loops 

stay live while Policy sheds first. 

• Scheduling guardrails. In WORK/BURST, lock kHz Reflex loops and shed Policy first as thermal limits 

near; in COOL-DOWN, down-clock but keep Reflex live—matching insect priorities [21-24]. 

• Sensing as “spiracles.” Treat thermistors/airflow sensors like spiracle baroreceptors; gate I/O per DGC and 

drive DVFS/ventilation set-points accordingly [17-20]. 

 

5. Use Cases and Actionable Guidance for Adoption 

The insect-inspired architecture, latency-first, two-tier control with a Reflex Tier (near-sensor, kHz-rate, instant-

on via MRAM/spintronic primitives) and a Policy Tier (slower planning/learning) plus the state-dependent thermal 

governance of §4, maps directly onto high-stakes systems that must act quickly, autonomously, and efficiently 

under tight energy and thermal limits. Below we convert the biology and physics into engineering recipes, with 

concrete components, control patterns, and validation steps. 



The insect-inspired architecture characterized by its latency-first two-tier control, spintronic-enabled instant-on 

capability, and state-dependent governance translates directly into critical advantages for systems where real-time, 

autonomous, and energy-constrained operation is paramount. This section outlines key use cases and provides 

actionable guidance for the adoption of these principles. 

5.1 Design of novel fuel-based propulsion systems with high thrust 

(Make power by frequency—keep efficiency flat) 

As established in §4.5–§4.6, ICEs and miniturbines are peak-island machines; insects achieve flat-band efficiency 

by frequency control + thermoregulation; therefore we decouple prime mover (held at its island) from propulsor 

(frequency-controlled). 

5.1.1 Objective and rationale 

Conventional thermal engines (ICEs and miniturbines) exhibit narrow best-efficiency islands tied to a particular 

power–rpm; efficiency falls sharply away from that point (see Fig. 4.3; §4.5.3). Tuning injection pulse frequency 

and timing helps emissions and noise but does not flatten the fundamental efficiency map (§4.5.1–§4.5.3). Insects 

instead regulate power by actuation frequency while holding muscle efficiency nearly constant by keeping 

temperature at a set-point and scaling ventilation/evaporation with work (§4.2–§4.5). 

Goal: build fuel-based propulsion that behaves like an insect at the system level, frequency-controlled thrust with 

near-constant efficiency over a wide range, by decoupling the prime mover from the propulsor and letting each 

live in its optimum regime. 

5.1.2 Architecture blueprint (“frequency governor” hybrid) 

• Prime mover (constant-efficiency island): a small ICE or miniturbine run near its best-efficiency point 

(narrow island; §4.5.3, §4.6). 

• Electric buffer: battery + supercaps sized to absorb burst gaps between average and instantaneous power 

(§4.3 ODE + burst budgets). 

• Propulsor (frequency-controlled): high-response electric motor + prop/fan/pump-jet; thrust tracks motor 

electrical frequency, keeping mechanical efficiency high across output range (insect analogue). 

• Power electronics: bi-directional DC/DC + inverter; reflex-class PWM at kHz. 

• Reflex Tier: MRAM-resident, instant-on controller executing stabilization and thrust commands at kHz 

(mirrors thoracic reflex loop). 

• Policy Tier: slow planner (routing, mission, optimization), exporting only goal states. 

• Thermal governance: the state machine from §4.2 enforces WARM-UP → WORK → BURST → 

COOL-DOWN with thermal-debt accounting from §4.3. 

Why it works: the prime mover sits on its island almost all the time; thrust is modulated by motor frequency, just 

like wingbeat in §4.5.2. The buffer covers fast transients and manages the latency of thermal machines (§4.6: 

miniturbines’ cold-to-idle seconds). 

5.1.3 Control strategy (Reflex/Policy split) 

Reflex (kHz): Close thrust/torque and stabilization loops within 1–2 ms end-to-end. Enforce the thermal burst 

budget by integrating 𝐶 𝑇̇ = 𝑃burst − 𝐺 (𝑇 − 𝑇∞)online and terminating BURST when 𝑇reaches 𝑇maxor when the 

closed-form limit 𝑡𝑏 = −𝜏 ln (1 −
𝐺 Δ𝑇max

𝑃excess
) is hit; log thermal debt and transition to COOL-DOWN while keeping 

Reflex deadlines met. Shed Policy first whenever thermal/voltage margins shrink.  

 

Policy (10–100 ms+): Keep the prime mover on its iso-BSFC island with slow trims; plan missions and schedule 

WARM-UP before expected BURST windows. 



5.1.4 Hardware patterns by domain 

Road (range-extender) 

• 20–60 kW ICE or microturbine @ island → 400–800 V DC link; 200–400 kWh battery+cap bank sized 

for bursts. 

• Propulsor: axle motors with field-oriented control (FOC); thrust = torque request = frequency 

(electrical). 

• Outcome: city stop-go handled by the buffer + frequency control (insect-like), engine sits at steady 

island → flat real-world efficiency. 

Air (distributed electric propulsion / hybrid) 

• 30–150 kW miniturbine-generator at island (cf. §4.6); high-rpm and start latency hidden by buffer. 

• Multiple small props per wing; per-motor frequency sets local thrust, enabling gust rejection with Reflex 

kHz loops. 

• Outcome: safe, responsive thrust modulation without throttling the turbine off-design. 

Water (pump-jet / prop) 

• Diesel-gen at island; pump-jet thrust from impeller frequency; cavitation avoided via Reflex watchdogs 

(pressure/accel). 

• Outcome: smooth low-speed thrust with prime mover steady; excellent station-keeping. 

5.1.5 Sizing & math hooks (quick rules) 

Energy buffer. For a target burst window Δ𝑡, size the buffer so that 

𝐸usable   ≥   𝐸burst ≈ (𝑃burst − 𝑃avg) Δ𝑡 

 

at end-of-life conditions (hot, aged). 

 

Thermal limit. Use §4.3 parameters to compute the allowable burst time 

𝑡𝑏    =    −  𝜏  ln (1 −
𝐺 Δ𝑇max

𝑃excess

) , 𝜏 =
𝐶

𝐺
,   𝑃excess = 𝑃burst − 𝐺 (𝑇0 − 𝑇∞). 

 

Thrust scaling reminder. For props/fans at similar efficiency and fixed geometry, thrust follows shaft frequency; 

regulate frequency (insect analogue) rather than throttling off-island. 

5.1.6 Safety & certification hooks 

The insect-style separation between fast Reflex and slower Policy provides explicit hooks for safety cases under 

ISO 26262, IEC 61508, or ISO 13849. For a given propulsion application we adopt: 

• Freedom-from-interference (FFI). The Reflex Tier runs on a pinned core (or dedicated neuromorphic die) 

with fixed priorities, no dynamic memory, and one-way single-producer/single-consumer (SPSC) queues 

from Policy. All plant-stabilizing loops (thrust, torque, braking) close entirely inside this island. Policy cannot 



pre-empt or delay Reflex work; its influence is limited to low-rate goal states (e.g., speed corridors, thrust 

limits). 

• WCET envelopes. For each Reflex loop we derive a WCET budget as in Table 2.1, starting from sensor 

exposure through neuromorphic layers to PWM/FOC update. For propulsion we target <5 ms end-to-end 

stabilization, with critical safeties <1 ms. Implementation-specific WCETs are taken at the hot corner (max 

temperature, min supply) and must exhibit ≥30% margin versus the requirement (e.g., 3.4 ms vs 5 ms). 

• Thermal and prime-mover monitors. Die/EGT sensors feed Reflex logic that asserts COOL-DOWN when 

thermal debt exceeds the budget (§4.2–§4.3). Prime-mover faults (turbine overspeed, EGT slew) trigger fuel-

shed while the Reflex Tier keeps the vehicle stable on the buffer, providing a documented graceful 

degradation path. 

• Fault campaigns. Section 5.4 details the fault taxonomy and injection methodology: transient single-event 

upsets (SEUs) in MRAM, STNO phase/amplitude jitter, sensor dropouts, and actuator faults are injected while 

verifying deadline compliance, safe-state entry latency, and bounded output deviation versus a fault-free 

trace. These campaigns, run on HIL rigs for the propulsion plant, provide the quantitative evidence required 

for SIL 2–3 / ASIL-C–D allocations. 

5.1.7 Validation plan (step-by-step) 

• HIL loop at kHz with plant models (prop, drivetrain, buffer, engine/turbine). 

• Burst tests: record (𝑃, 𝑇, RPM) vs. predicted §4.3 curve; verify deadlines and miss counters = 0. 

• Thermal cycles: alternate BURST/COOL-DOWN to validate thermal-debt controller. 

• Off-design trials: hold prime mover at island while sweeping thrust frequency; confirm flat system 

efficiency compared to stock throttle maps. 

• Fault injection: sensor dropout, clock drift, memory CRC fault; verify Reflex containment. 

5.1.8 Quick “Principle → Requirement → Action” table 

Principle Propulsion Requirement Actionable Guidance 

Frequency-controlled 

thrust (insect) 

Wide-range thrust with 

minimal efficiency drift 

Decouple: prime mover at island; thrust via motor 

frequency; buffer covers transients (§4.5–§4.6) 

Thermal governance Bounded temps during bursts Apply §4.3 ODE to compute burst time; enforce 

COOL-DOWN; shed Policy first 

Instant-on Reflex kHz stabilization independent 

of prime-mover state 

MRAM Reflex Island near drivers/sensors; 

deadline monitors; DMA windows 

Cold-start latency 

(miniturbine) 

Usable thrust before light-off Pre-warm plan; buffer-only takeoff/launch; soft-

hand-over to turbine (§4.6) 

Safety case WCET & FFI Fixed priorities; single-core pinning; one-way 

SPSC queues; watchdogs & logs 

 

5.1.9 Insect inspired fuel based IFEVS Thruster  

Building on the experience of the first author, who as former director of the Fiat Research Centre contributed to 

the development and industrialisation of the common-rail diesel injection concept, one of the key enablers in 

raising production diesel engine efficiencies from ~25% to >45%, we now seek an analogous step change in 

specific efficiency for small air-breathing thrusters. The IFEVS concept is in an advanced design and prototyping 

phase; the figures used here are engineering estimates informed by subsystem tests and 1D cycle analysis. A 

separate, dedicated propulsion paper is in preparation; the present section only needs enough fidelity to support 

the architectural argument of §5.1. 



Data status, test conditions, and methodology 

The quoted >40% thermal efficiency refers to fuel-to-jet power at the outlet of the hot core before the compact 

augmenter. This value is obtained from a cycle model calibrated against component-level measurements of 

combustor pressure loss and temperature rise, nozzle efficiency, and measured mass flow under ISA sea-level 

static conditions (ambient 15–20 °C, p ≈ 101 kPa, zero flight speed). The working fuel in all comparisons is Jet-

A/kerosene with a lower heating value LHV ≈ 43 MJ/kg; we assume ±1 MJ/kg variation in LHV in the uncertainty 

budget. 

The present prototypes are instrumented with conventional laboratory sensors (differential and absolute pressure 

transducers, K-type thermocouples, and fuel flowmeters), but a fully integrated, long-duration test rig with formal 

calibration traceability is still under construction. For this reason, we treat the IFEVS numbers here as design-

point values with conservative uncertainty bands, rather than as final certified performance. We report thermal 

efficiency as 40% ±5 percentage points, reflecting model uncertainty, instrumentation accuracy, and sensitivity to 

assumed pressure losses. 

Reference microturbine and comparison basis 

To make the comparison concrete, we benchmark against a commercial ~400 N-class microturbine (JetCat-P400), 

using public thrust and fuel-flow data across its allowable throttle range. From these we derive 10 representative 

points between 80 N and 540 N equivalent thrust. At each point we compute the effective fuel consumption 

(mL/min) and an approximate overall thermal efficiency using the same Jet-A LHV and sea-level static 

assumptions. 

On the IFEVS side, the cycle model provides core mass flow, temperature ratio, and jet power as a function of 

fuel flow, from which we derive thrust before and after the compact augmenter. This augmenter trades jet speed 

for entrained mass flow and static pressure recovery, yielding a thrust multiplication of 1.8 ±0.1 with only a modest 

additional pressure loss. The result is a nearly flat efficiency band from ~30 N to >600 N net thrust, in contrast to 

the narrow peak of the microturbine. 

A summary comparison is given in Table 5.1, where for each thrust level we list: 

• microturbine thrust and fuel flow, 

• IFEVS thrust and fuel flow, and 

• the resulting fuel-flow ratio IFEVS/microturbine. 

Table 5.1: IFEVS vs JetCat P400 fuel flow vs net thrust (ISA SL, Jet-A). 

Thrust (N) IFEVS fuel (mL/min) P400 fuel (mL/min) Fuel ratio IFEVS / P400 

80 143 391 0.37 

120 215 507 0.42 

160 287 623 0.46 

200 358 739 0.48 

240 430 855 0.50 

280 502 971 0.52 

320 573 1087 0.53 

360 645 1203 0.54 



Thrust (N) IFEVS fuel (mL/min) P400 fuel (mL/min) Fuel ratio IFEVS / P400 

400 717 1319 0.54 

440 788 — — 

480 860 — — 

520 932 — — 

540 968 — — 

JetCat P400 values are only shown up to 400 N, consistent with the manufacturer-rated thrust band; no 

extrapolation is used, so cells above 400 N are left blank. 

Over the 400 N design point, the IFEVS thruster consumes ≈0.5 ±0.05 times the fuel of the reference microturbine. 

At low partial load (~80 N), where the turbine operates far off its BSFC island, the ratio drops to ≈0.37 ±0.05, 

consistent with the insect analogy of nearly constant muscle efficiency over a wide power range (§4.5.3). 

In practice, the IFEVS thruster behaves like an internal combustion engine that never leaves its best-efficiency 

island: it reaches a typical ICE peak thermal efficiency (≈40%) but, insect-style, keeps this efficiency essentially 

flat across its whole operating thrust range, rather than collapsing at partial load as miniturbines do. 

 
Figure 5.1: Comparison of schematic mechanical efficiency envelopes for conventional engines, miniturbines, 

insect flight muscle, and the IFEVS thruster. Normalized mechanical power is expressed as a fraction of rated 

power. The solid curve shows a typical diesel/gasoline internal combustion engine with a narrow efficiency peak 

around 40–45%. The dashed curve shows a representative gas miniturbine (200N-400N) with a lower peak 

efficiency (~25%) and pronounced off-design penalties. The shaded band at 10–15% reproduces the insect flight 

muscle efficiency envelope, with representative digitized data points from Weis-Fogh [52], Ellington [53], and 

Harrison & Roberts [54]. The hatched band illustrates preliminary IFEVS thruster data (50N-600N), with a nearly 

flat thermal-mechanical efficiency slightly above 40% from ~0.2 to 1.0 of normalized thrust, combining ICE-like 

peak efficiency with insect-like flatness across load. 

 

Uncertainties, limitations, and mission-level projections 

• The uncertainties quoted above are engineering confidence intervals derived from: 

• model sensitivity to assumed pressure losses and mixing efficiency (±3–4 percentage points on thermal 

efficiency), 



• expected calibration accuracy of mass-flow and temperature sensors (±2–3%), 

• variability in augmenter entrainment ratio and back-pressure (±0.05 on thrust multiplication), and 

• variability in ambient conditions around the ISA reference (±5% in density over a 10–15 °C swing). 

Combining these conservatively gives the ±5 percentage points band around the 40% thermal-efficiency figure 

and the ±0.05 bands on the fuel ratios quoted above. For acoustic predictions we similarly carry a ≤100 ±3 dB at 

3 m estimate, based on subsonic ejector exit velocities and standard semi-empirical jet-noise models; full 

aeroacoustic measurements are part of the planned integrated test campaign. 

At the system level we have also simulated simple mission profiles, hover, climb, and level cruise, using the same 

cycle model coupled to a notional vehicle mass and drag. These simulations show that, for representative duty 

cycles, the integrated fuel saving versus the microturbine remains in the 40–60% range, with the largest relative 

gains appearing at low-power segments (hover, loiter) where the turbine spends long periods far from its efficiency 

island. Because the mission simulations share the same model and assumptions as the static design points, we 

present them qualitatively and defer full time-series plots of thrust, fuel flow, exhaust gas temperature, and exhaust 

temperature to a dedicated technical report. 

Architectural implications 

• Even with these conservative uncertainties, the picture that emerges is robust: 

• an insect-style prime mover whose efficiency degrades gently with load instead of collapsing away from a 

narrow island; 

• instantaneous response (valve/ignition limited) rather than seconds-scale spool dynamics; 

• cool, slow exhaust (~150 °C at the augmenter exit) enabling safe operation near people and structures; and 

• a mechanically simple, non-rotating architecture naturally compatible with the Reflex/Policy split and 

WCET reasoning of §2 and §5.1.6. 

The IFEVS thruster is a worked example of how insect-inspired thermodynamics and neuromorphic control can 

combine: a compact “thorax” running near its efficiency sweet spot, coupled to an ejector “wing” that shapes thrust 

without paying the usual penalties at partial load. A full validation and peer-review of the propulsion data will 

follow in a dedicated venue; here, the thruster serves to make the architectural trade-offs of the insect template 

concrete. 

Table 5.2: Comparison table of the Insect inspired fuel based Thruster vs State-of-the-art microturbine 

Metric IFEVS thruster 
State-of-the-art microturbine (similar 

thrust) 

Thermal efficiency 

(core) 
> 40% before augmenter (fuel→jet power) ~20–30% peak; sharp drop off-design 

Thrust–load behaviour 
Flat efficiency from ~30 N → 600+ N after 

augmenter 
Narrow island; poor partial-load BSFC 

Fuel use @ ~400 N ≈ ½ the fuel of miniturbine Baseline 

Fuel use @ ~50 N 
≈ ⅓ the fuel vs turbine at low-load 

operation 
Strong efficiency loss at low throttle 

Exhaust temperature ~150 °C at augmenter exit ~500–1000 °C EGT; hot jet 

Acoustic signature ≤100 dB @ 3 m, subsonic ejector exit 
Hot, often supersonic microjets; much 
louder 

Response time Near-instant; no spool-up Spool-up / light-off delays (seconds) 



Metric IFEVS thruster 
State-of-the-art microturbine (similar 

thrust) 

Architecture / 

maintenance 

No rotating parts; ~½ weight; low 

maintenance 

High-speed rotor/bearings; higher 

maintenance load 

Efficiency and fuel use. At the thermodynamic level the IFEVS core reaches >40% thermal efficiency before the 

compact augmenter, i.e. roughly double the typical 20–30% peaks reported for small recuperated microturbines 

(§4.6). Because thrust is boosted by an ejector-style augmenter that trades jet speed for entrained mass flow and 

static pressure recovery, the system maintains a near-flat efficiency band from ~30 N to >600 N net thrust. This 

directly mirrors the insect pattern of “power by frequency at nearly constant efficiency” (§4.5.3): thrust is 

modulated by flow and frequency, not by throttling the core far off its island. In practical terms, at a ~400 N design 

point the IFEVS thruster consumes roughly half the fuel of a miniturbine, and at ~50 N partial load the fuel burn 

can drop to about one-third of a turbine operating at the same net thrust but far from its optimum island. 

Augmenter, exhaust temperature, and safety. The compact augmenter delivers an additional ~×1.8 thrust boost 

with minimal extra fuel by entraining ambient air and recovering static pressure, rather than simply accelerating a 

small hot jet. This produces a much cooler mixed exhaust, with gas temperatures ~150 °C at the outlet instead of 

the 500–1000 °C typical for microturbine exhaust. The resulting low-temperature, low-velocity jet greatly 

simplifies vectoring hardware, reduces thermal loading on nearby structures, and shrinks the IR signature, critical 

for operations close to personnel, sensitive payloads, or in contested environments. In the insect analogy, the hot 

“muscle” is kept compact while the effective “wing” is a much larger mass of cooler entrained air. 

Noise, signature, and mission envelopes. Because the ejector exit remains subsonic and the jet is relatively cool, 

predicted acoustic levels are ≤100 dB at 3 m for representative layouts, dramatically below the harsh tonal noise 

produced by hot, sometimes choked microjets of similar thrust. Combined with the low exhaust temperature, this 

softens both acoustic and infrared signatures, enabling operations near ground troops, in urban canyons, or for 

covert ISR platforms where microturbine noise and plume would be unacceptable. The low-speed gases are also 

naturally compatible with distributed ejector arrays, enabling rotor-free VTOL matrices where lift comes from 

many small, cool jets rather than exposed high-tip-speed rotors. 

Response time and Reflex compatibility. Microturbines suffer from cold-to-idle and spool-up latencies in the 

10–20 s range (§4.6), forcing them to loiter at fuel-wasting idle whenever immediate thrust might be required. The 

IFEVS thruster, with no high-inertia rotating assembly, offers near-instant activation: thrust is gated primarily by 

fast valves and ignition rather than rotor acceleration. This matches the latency-first architecture of §2: a 

neuromorphic Reflex Tier can safely command rapid starts, hops, and burst thrust changes within the kHz sensor–

actuator loop, without being constrained by seconds-scale turbomachinery transients. In other words, the effective 

cold-to-useful-thrust latency becomes compatible with insect-like bursts and with the burst-budgeting logic of 

§4.2–§4.3. 

System simplicity, VTOL potential, and business appeal. Compared to a miniturbine, the IFEVS thruster is 

mechanically simple (no compressor or turbine stages, no high-speed bearings), exhibits higher intrinsic reliability, 

and is expected to weigh roughly half as much for the same thrust envelope. The cold, low-speed exhaust opens 

the door to closely packed, ducted thruster matrices for rotorless VTOL and agile attitude control, directly 

benefiting from the frequency-governed thrust patterns of §5.1. From an industrial standpoint, the architecture is 

compatible with automotive-style manufacturing (sheet-metal, castings, standard injectors), supports multiple 

fuels including future green drop-ins, and scales from small logistics drones to larger platforms. This combination 
of deep-tech novelty (spintronic-enabled Reflex control, insect-inspired thermodynamics) with a clear 

manufacturing and certification path is precisely the kind of defensible, low-risk innovation that can appeal even 

to conservative investors and defence procurement agencies. 



5.2 Autonomous vehicles & micro-robotics (A one-to-one mapping of the insect edge) 

Principle Vehicle Requirement Actionable Guidance 

Reflex Tier 

(Fly) 

Deterministic safety: 

stabilization, obstacle avoidance, 

traction/braking 

Co-locate IMU/event camera + Reflex Island; run 

stabilization at 1–2 kHz; keep E-stop <1 ms path; 

MRAM for instant-on 

Policy Tier 

(Bee) 

Robust navigation: VO, mapping, 

intent 

Separate RT core/NPU at low priority; publish only 

goal states (speed corridors, waypoints) to Reflex 

Thermal 

governance 

Predictive performance: short 

high-power bursts 

Implement §4.2 state machine; compute burst budgets 

via §4.3; log thermal debt and deadline misses 

Spintronics Low-power, event-driven 

perception 

Use STNO reservoirs for vibration/flow/event-camera 

streams; MRAM synapses for reflex weights 

Certification Freedom-from-interference Partition clocks/cores/memory; lock-free SPSC; 

WCET tables; watchdog + safety log 

Notes: For aerial micro-robots, §5.1’s frequency-governed thrust (electric props) is directly applicable; for ground 

robots, use frequency-to-torque via FOC current loops with the same thermal budgeting logic. 

5.2.1 Insect inspired vision for safer Cargo e-Bikes  

Urban cargo e-bikes operate in a cluttered, high-conflict environment: dooring, side-swipes by vans, pedestrians 

stepping out from occlusions, and sudden braking by leading vehicles. Following recent work on active vision and 

pattern recognition in bees [58], insect-inspired neuromorphic computing [59], and insect-brain-inspired policy 

learning [60], we treat the bike and rider as a “fly + bee” system on wheels: wide-field, low-latency vision for 

immediate collision avoidance (fly), combined with slower heuristics and route-level support (bee). 

Concretely, we propose a multi-camera “vision belt” around the cargo e-bike frame (front, rear, lateral fisheye 

modules) plus IMU and wheel-speed sensors. Each camera/IMU pair feeds a near-sensor Reflex Tier on a 

neuromorphic/low-power SoC, running insect-like primitives: wide-field optic-flow estimation, looming/closing-

speed detection, lane/door-zone detection, and basic vulnerable-road-user classification, echoing the 

spatiotemporal encoding strategies observed in bee lobula neurons [58]. The Reflex Tier must signal imminent 

collision risks within a strict latency envelope so that the rider’s braking and evasive actions remain effective. 

Latency budget for the cargo e-bike Reflex loop 

Table 5.3 summarizes a representative latency budget for one Reflex loop (front camera + IMU → looming SNN 

→ haptic/LED cue). We assume a 200–250 Hz global-shutter CMOS or DVS camera, with events delivered to a 

Loihi- or Akida-class neuromorphic core and a simple microcontroller-based haptic/LED driver. The numbers are 

worst-case at the hot electrical corner (high temperature, low voltage) and include guard bands: 

Table 5.3: Example Reflex-loop latency budget (cargo e-bike, front looming detection) 

Stage Function Latency (ms) Cumulative (ms) 

1 Camera exposure + readout / event aggregation 5 5 

2 DMA + timestamp + spike/event encoding into Reflex Island 2 7 

3 Looming-detection SNN inference (1–2 layers, few k neurons) 4 11 

4 Reflex decision logic + hazard classification + queue write 3 14 

5 Haptic/LED driver update + actuator rise time 4 18 



This yields an end-to-end Reflex latency of ≈18 ms against a 20 ms design target, leaving ~10% margin. Immediate 

emergency cues (hard looming, imminent lateral impact) are generated directly by the Reflex Tier and bypass the 

slower Policy Tier, which handles trajectory-level reasoning. Given that human reaction times are typically O(500 

ms), this sub-20 ms envelope is sufficient to meaningfully extend the effective braking distance margin in urban 

traffic. 

Energy budget and solar sizing 

From a power perspective, the cargo e-bike behaves like a small ground “drone”: propulsion dominates the energy 

budget, but sensing/compute must remain compatible with a largely self-charging vehicle. Reviews of electric 

cargo cycles report energy consumption in the range of 9–18 Wh/km depending on load and terrain; we adopt 14 

Wh/km as a conservative value for loaded last-mile delivery work. For a typical urban duty cycle of 40 km/day, 

the propulsion demand is then about 560 Wh/day. 

The neuromorphic safety shell (multi-camera belt, IMU, Reflex Tier, haptics/LEDs, and a small Policy MCU) can 

be dimensioned to draw on the order of 5 W average while riding and ≲1 W in idle/parked monitoring, using near-

sensor event cameras and low-power SNN hardware. For 3 h/day of active riding and 9 h/day of low-rate 

monitoring this corresponds to ≈30 Wh/day, small compared to propulsion but non-negligible in a solar-assisted 

system. 

We therefore size a vehicle-integrated PV surface on the cargo box and canopy of A ≈ 1.0 m², consistent with 

existing solar e-bike and cargo-bike implementations (1.0–1.5 m² roofs or box faces). Assuming commercially 

available lightweight modules with η ≈ 23% [68] and a central south Europe latitude average insolation of ≈4.6 

kWh/m²/day over the year on a horizontal surface the daily energy harvest is: 

EPV≈A×η×H×f≈1.0 m2×0.23×4.6 kWh/m2/day×0.6≈0.63 kWh/day 

where 𝑓 = 0.6 accounts for MPPT/charging efficiency and shadowing. 

Compared to the ~0.63 kWh/day of total demand (0.60 kWh propulsion + 0.03 kWh sensing/compute), the PV 

system covers most km in a typical European summer/spring duty cycle, leaving a modest margin for less 

favourable conditions. This order-of-magnitude balance is consistent with recent measurements on solar electric 

cargo bikes developed by IFEVS withing the Edge AI Trust project [69], whose ~210 Wp of integrated PV supply 

roughly 50% on average and up to 100% of the daily energy consumption in last-mile delivery operations of a 

1000L box cargo bike (full dataset available in forthcoming project report). 

Integration with the insect template 

The resulting architecture is directly compatible with the insect template of this paper: 

• a fast Reflex Tier (camera/IMU → neuromorphic looming SNN → haptic/LED) with a quantified sub-20 ms 

WCET envelope and clear separation from the slower route-planning Policy Tier; 

• a solar-governed duty cycle where the bike operates much like an insect balancing energy intake and 

expenditure over the day; and 

• a largely self-charging cargo platform analogous to existing IFEVS-type systems, but with an explicit 

safety-critical perception shell inspired by insect vision. 



5.3 Medical implants and wearable devices (Years of standby; milliseconds to act) 

Principle Medical Requirement Actionable Guidance 

DGC / I/O gating 

(§4.1) 

Extreme energy 

conservation 

Closed/Flutter duty-cycling of sensing; Open on anomaly; 

RTC-only heartbeat during Closed 

Spintronics 

(MRAM) 

Instant event capture 

& integrity 

Reflex Tier always resident in MRAM; no DRAM warm-up; 

log ring-buffers with ECC/CRC 

Policy learning Personalized 

thresholds 

On-device adaptation (simple STDP/EMA) in Policy; export 

only gains/thresholds to Reflex 

Thermal 

governance 

Skin comfort & safety Treat surface 𝑇 and battery 𝑇 with §4.2 state machine; 

guarantee Reflex availability while throttling analytics 

Safety & privacy Determinism & local 

data 

WCET envelopes for detection; encrypted logs; on-device 

inference; no cloud dependency for immediate actions 

Examples: seizure detectors, arrhythmia monitors, closed-loop neurostim; the Reflex executes detection/stim in 

sub-ms; Policy adapts over days; thermal protects tissue. 

5.4 Industrial robotics & control (Uptime and determinism above all) 

Principle Industrial Requirement Actionable Guidance 

Reflex isolation Immediate safety (E-

stop, limits, interlocks) 

Put all safety loops on Reflex Island; pin core, fixed priorities; 

zero dynamic memory; deadline monitors 

Two-tier split Flexible tasks w/o jitter Reflex: 1–2 kHz PID/LQR, commutators; Policy: vision, 

optimization, job scheduling; one-way queues 

STNO 

reservoirs 

High-bandwidth sensing Inline temporal processing for accelerometers/vibration; 

predictive maintenance at the edge 

Thermal 

governance 

Shift-resilience Use §4.3 budgets; enforce COOL-DOWN; rate-limit bursts; 

log thermals for maintenance 

Certification SIL 2–3 / ISO 13849 Prove freedom-from-interference; margin ≥30% on Reflex 

deadlines at hot corner; watchdog and safe states documented 

 
To achieve safety certification (e.g., ISO 26262/ASIL), the Reflex Tier must be proven deterministic under error; 

this requires deploying Fault-Testing Strategies, specifically transient fault injection targeting the spintronic 

primitives (MRAM/STNO stochasticity) and Policy/Reflex boundary violation testing to quantitatively 

demonstrate that failure modes in the Policy Tier cannot compromise the Reflex Tier's integrity, ensuring the 

system can either gracefully degrade to a safe state or initiate an emergency stop within the prescribed tau < 1 ms 

safety window. 

6. Conclusion 

We have argued that insects offer a compact but powerful blueprint for edge intelligence: a fast, latency-bounded 

Reflex Tier co-located with sensors and actuators, and a slower Policy Tier that reasons over maps, goals and long 

timescales. On the hardware side, we showed how spintronic primitives (MRAM synapses and STNO “neurons”) 

can implement this hierarchy with predictable worst-case execution times, extremely low standby power and innate 

robustness to noise. On the system side, we instantiated this template in two domains: an insect-inspired IFEVS 

thruster with nearly flat-band efficiency, and a 360° vision shell for solar cargo e-bikes. In both cases, the insect 

metaphor is not decorative, but structural: power is modulated primarily by frequency, thermal debt is carefully 

governed, and reflexes are strictly separated from higher-level policy. 



From an environmental standpoint, the architecture is deliberately biased towards doing more with less. The 

IFEVS thruster operates at higher thermal efficiency than reference miniturbines across a wide load range, roughly 

halving fuel consumption around its 400 N design point and gaining even more at partial load. That translates 

directly into reduced CO₂ emissions and lower local pollutants for a given mission profile, particularly in duty 

cycles dominated by loiter, hover or low-power cruise. The cargo e-bike example pushes the same logic to the 

urban ground scale: a safety-critical neuromorphic shell that typically consumes only tens of Wh per day and can 

be powered, together with propulsion, by a modest square metre of high-efficiency PV. Combined with near-

sensor computing and spintronics, this suggests a path to energy-autonomous edge systems that lean on local 

renewables instead of continuous grid or cloud backhaul. 

The social and ethical implications are equally important. Both application examples target safety in human 

environments: quieter, cooler thrusters that can operate near people and infrastructure without dangerous exhaust 

plumes, and cargo cycles that watch for dooring, side-swipes and vulnerable road users. At the same time, the 

same sensing and control capabilities are intrinsically dual-use: the architecture that makes a delivery bike safer 

also makes a small drone more capable in contested space. It is therefore crucial that insect-inspired edge AI be 

developed under explicit governance and transparency constraints: clear separation between safety reflexes and 

mission logic; documented WCET envelopes and fault-containment behaviour; and strict data-minimisation for 

vision systems in public space (e.g., optic-flow and looming detection without long-term identity tracking). The 

insect blueprint helps here as well: minimal memory, task-specific perception, and short retention by design. 

There are, however, limits and risks on the hardware side, especially for spintronics. While embedded MRAM is 

already at high technology readiness and can be exploited as a non-volatile synaptic substrate, large-scale STNO 

reservoirs and dense spin-neuron fabrics are still maturing. Process variability, thermal noise, coupling complexity 

and integration with CMOS place practical bounds on the size and precision of neuromorphic networks one can 

implement in the near term. Materials and supply-chain constraints (e.g., reliance on specific alloys or fabrication 

steps) may also cap scalability or concentrate manufacturing in a small number of fabs, which raises resilience and 

sovereignty questions. There is a risk of over-promising if spintronics is treated as a drop-in replacement for all 

forms of AI acceleration rather than as a targeted solution for ultra-low-power, reflex-like tasks. 

More broadly, the insect template comes with architectural risks if misapplied. A reflex-dominated system without 

sufficient transparency can be difficult to audit or override; conversely, an overgrown Policy Tier that continuously 

interferes with Reflex loops undermines the very determinism the architecture is meant to guarantee. In this sense, 

the main limitation is not only technological but organisational: certification regimes, development processes and 

human-machine interfaces must keep the Reflex/Policy boundary clean, explainable and testable. Our proposed 

WCET envelopes, fault taxonomies and fault-injection campaigns are first steps, not final answers. 

Despite these caveats, we believe that “edge AI in nature” is more than a metaphor: it is a design discipline. Insects 

show that it is possible to combine strict energy budgets, hard real-time reflexes and surprisingly rich behaviour 

in tiny, noisy packages. Translating that discipline into spintronic-enabled electronics, fuel-efficient thrusters and 

solar-assisted micromobility will require sustained work across biology, materials science, safety engineering and 

policy. If done carefully, the payoff is compelling: edge systems that are not only more capable, but also more 

frugal, quieter, safer and easier to certify; in short, machines that borrow not just the agility of insects, but also 

their coexistence with the environments and societies they inhabit. 
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